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Abstract

Prevention efforts often involve spillovers, positive or negative, on
other individuals, but this is neglected by standard models of risk
prevention. We analyze strategic interaction between decision mak-
ers whose effort affects each other’s risk. We characterize response
functions and Nash equilibria, providing proof of existence and an-
alyzing the Pareto efficiency and possible multiplicity of equilibria.
We then analyze the optimal effort level from a social point of view,
finding conditions under which Nash equilibria are characterized by
under– or over–provision of effort, which calls for policy interventions.
Finally, we specialize our model to describe the risk of COVID–19
infection. The features of contagion are consistent with the existence
of asymmetric equilibria where the high effort exerted by one decision
maker pushes another to exert low effort. Moreover, socially optimal
mandatory policies, for instance concerning face masks, can cause a
decision maker to decrease exerted effort.

JEL Codes: D81, C72, I12
Keywords: prevention, interaction, COVID-19, contagion.
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1 Introduction

The risk of incurring bad events is frequent in the lives of individual decision
makers. These events may involve financial damage, for example patrimonial
loss or income reduction, but they also include health and physical problems,
like disease or accident. A typical way to deal with this kind of risk is trying
to reduce the probability that the bad event will occur through actions known
as “risk prevention”.

Prevention has been widely studied in decision theory literature. Starting
with the seminal paper by Ehrlich and Becker (1972), it was discussed with
relation to the choice of a decision maker who faces the risk of incurring a
future loss, of any potential type, and has the option to reduce the probability
that the loss will occur by exerting some kind of costly effort. Many issues
have been analyzed in the literature. Dionne and Eeckhoudt (1985), Briys
and Schlesinger (1990), and Eeckhoudt and Gollier (2005) examine the role
of preferences in determining optimal choices. Sweeney and Beard (1992)
consider the effect of a change in the size of the possible loss. Jindapon
and Neilson (2007) study the implications of the introduction of random
wealth in both states of nature. Menegatti (2009) analyses prevention in a
multi-period context. Eeckhoudt et al. (2012) and Courbage and Rey (2012)
examine the effects of the introduction of a background risk. Chuang et al.
(2013) and Crainich et al. (2016) consider the effects of changes in risk of
different orders.1 Crainich and Menegatti (2021) analyse the implications of
random costs of prevention.

So prevention in general has been widely studied, but, to our knowledge,
the fact that preventive actions exhibit interactions has been almost entirely
ignored. In fact, when an individual tries to prevent a bad event and reduce
the probability that this event will occur, he often also affects the probability
that a similar event will occur for someone else. A good example of this was
seen in the recent COVID-19 pandemic, where it is very clear that when one
person takes protective measures, such as wearing a mask or washing hands,
he reduces not only his own probability of contagion but also the probability
of contagion for other people. Similarly, in a different context, if a car driver
avoids drinking before driving and drives carefully, he will reduce not only his
own probability of a car accident but also the probability of an accident for
other road users. These are two examples where, while trying to prevent a risk
for himself, a decision maker also generates a reduction in the probability that
the bad event will occur to other people. The opposite effect is also however

1For a general recent classification of effects of high-order changes in risk see also
Menegatti and Peter (2021).
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possible. In fact, in some cases, if one agent prevents something for himself,
he will increase the probability that another agent incurs a bad event. For
instance, installing a burglar alarm and putting iron bars on windows will
reduce the probability of burglary in one’s own home, but it will increase
the probability that the burglar targets a neighbor’s house. Similarly, if a
defendant hires a good lawyer to represent him in a trial this may lower his
chances of being convicted but it may also increase the probability that the
other party loses.

These effects, which are important issues in prevention, are not however
studied in the literature. 2 The first aim of the present paper is to fill this
gap in the literature by studying the implications of interaction in preventive
actions made by two different decision makers in the usual Ehrlich and Becker
(1972) prevention model. We study strategic decisions in this framework and
find the optimal choice for each decision maker, given the choice made by the
other. On the basis of this reaction function, we determine the decentralized
Nash equilibria by considering the situations where both decision makers
make their optimal responses.

This analysis distinguishes two circumstances. The first is the case where
the two efforts in prevention made by the two decision makers reinforce each
other. This is the case where the efforts of one decision maker reduce the
probability of a bad event for the other, as described above in the case of
COVID–19 prevention measures and careful driving. The second case is that
where the two efforts conflict, as in the case where the effort of one decision
maker increases the probability that the other incurs a bad event, as described
above for burglar alarms. Our results show that this distinction is important
in determining the features of the different equilibria which may arise, but
that the distinction is not the only relevant element. In fact, our analysis
highlights that both marginal benefits and marginal costs of prevention are
affected by interactions and that the total effect depends on the way in which
different partial effects are combined. In this direction, a characterization of
different possible sets of equilibria is provided.

The presence of possible interactions in prevention activities opens the
space for a comparison between choices made by individuals in a decentralized

2A partial exception is a recent note by Salanié and Treich (2020), who study a model of
infection prevention in a pandemic where the probability of contagion of one agent depends
on the prevention effort exerted by other agents. However, they consider a continuum
of agents with specific parametrized utilities, focusing on a policy maker’s introduction
of compulsory effort in prevention and disregarding strategic interaction. Accordingly,
their model deviates from the standard model of prevention by Ehrlich and Becker (1972)
(examined in the present work), and exhibits a specific formalization, based on Hoy and
Polborn (2015).
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decision process and choices that may be optimal for the society as a whole.
The idea that individual behavior in prevention can lead the economy to
an undesirable equilibrium is associated with the presence of inefficiency, in
that the individual agent does not internalize the spillover effects that he
generates on other agents into his decision process.

This issue is particularly significant since it implies that, in some cases,
individual choice may generate situations of “under-prevention” or “over-
prevention”. A clear example of under-prevention can be seen in the recent
COVID-19 pandemic where, in many cases, individual behavior in terms of
prevention has been found to be too weak from a socially optimal standpoint
(Toxvaerd, 2020; Heck et al., 2021; Farboodi et al., 2021).

To our knowledge, the issue of prevention being sub-optimal from a social
perspective has not to date been covered in the literature.3 The second
aim of this paper is to fill this second gap in the literature by comparing
decentralized equilibria with a centralized economy where a planner chooses
optimal levels of prevention for all agents. Our analysis shows that sub-
optimality may arise in the decentralized framework and provides evidence on
what distinguishes cases of under-prevention from cases of over-prevention.

From a mathematical point of view, our model share some elements with
two different strands of literature. The case where efforts of the two de-
cision makers conflict exhibits some similarities with rent-seeking models,
pioneered by Tullock (1980) and studied under risk aversion by Konrad and
Schlesinger (1997).4 Some important differences are however present. Rent
seeking models are designed to describe strategic behavior in a contest and
thus assume perfectly negatively correlated outcomes (one agent succeeds if
the other fails). On the contrary, the ex-post levels of wealth of the agents
in our model are independent, conditional on individual probabilities of loss.
Moreover, because of the kind of problem examined, the analysis of rent
seeking models typically disregards the comparison between centralized and
decentralized choices, which is prominent in our study. On the other hand,
the case where the efforts of the two decision makers reinforce each other
exhibits some mathematical similarities with models of production in teams

3Two exceptions should be noted, although the approaches are completely different
from that proposed in the present paper. The first is the paper by Salanié and Treich (2020)
mentioned above. The second is Menegatti (2021b), who does not analyze interactions
between decision makers and takes the possible sub–optimality of prevention choices (and
particularly under–prevention) as a fact and, given this premise, studies whether and how
it could be reduced by means of subsidies.

4The literature on the rent-seeking model under risk aversion has evolved then in dif-
ferent directions (Cornes and Hartley, 2003; Treich, 2010; Liu et al., 2018; Menegatti,
2021a).
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(Holmstrom, 1982; Rasmusen, 1987), but once again, with the difference that
in the latter models outcomes are perfectly correlated (all team members win
or lose together).

As noted above, the recent COVID-19 pandemic is a very good example
of a situation where there is interaction between agent choices on preven-
tion.5 Starting from this premise, the paper provides a simple application of
our general analysis to the use of face masks in preventing contagion. The
results provide a possible explanation, based on strategic interaction, for evi-
dence which emerged in many countries that effort levels in prevention during
the pandemic varied significantly between people in terms of individual pre-
vention. Moreover, our analysis also provides a new theoretical foundation,
based on the comparison between decentralized and centralized equilibria,
for the measures taken in many countries to push people to increase effort in
preventing infection.

The paper proceeds as follows. Section 2 examines the framework and
studies individual choices. Section 3 analyzes the equilibria determined by
interactions. Section 4 compares these equilibria with those of a central-
ized economy. Section 5 considers the application to face masks during a
pandemic. Lastly, Section 6 concludes.

2 Individual choices

Consider two Decision Makers, Decision Maker A (DM A) and Decision
Maker B (DM B) whose preferences are represented respectively by the util-
ity functions U(x) and V (x), defined over R+. The two functions exhibit
non-satiation (∂U

∂x
= U ′(x) > 0 and ∂V

∂x
= V ′(x) > 0), and risk aversion

(∂
2U
∂x2 = U ′′(x) < 0 and ∂2V

∂x2 = V ′′(x) < 0). DM A has an initial wealth
equal to WA and faces the risk of incurring a loss LA with probability p (i.e.
his wealth remains WA with probability 1 − p and becomes WA − LA with
probability p). Similarly, DM B has an initial wealth equal to WB and faces
the risk of incurring a loss LB with probability q (i.e. his wealth remains WB

with probability 1 − q and becomes WB − LB with probability q). We also
assume that each DM can exert a costly effort to reduce the probability of
incurring the loss. This implies that p is a decreasing function of the effort
eA and q is a decreasing function of the effort eB. For given levels of effort,
the losses of the two DMs are uncorrelated events. Consistently with the
literature, we also assume that the marginal effect of effort decreases when

5In general, the prevention model has been applied to health problems (e.g. Courbage
and Rey, 2006; Menegatti, 2014). On the specific issue of vaccination decisions, see
Nuscheler and Roeder (2016) and Crainich et al. (2019).
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the level of effort increases. Since p and q are decreasing functions of eA and
eB, respectively, this requires that they are both convex. This assumption is
usual in prevention models.

This framework is the traditional Ehrlich and Becker (1972) model of
prevention with the only exception that we consider two DMs instead of one.
We now introduce the new element studied in this work: interaction. We thus
assume that p depends not only by eA but also on eB and that q depends
not only by eB but also on eA. This means that the effort in prevention of
one DM affects the probability of occurrence of the bad event for the other.

Hence in our framework p = p(eA, eB) and q = q(eA, eB). The traditional
assumptions on the effect of his own effort on DM’s probability of loss occur-
rence made above imply that pA(eA, eB) = ∂p

∂eA
< 0, qB(eA, eB) = ∂q

∂eB
< 0,

pAA(eA, eB) = ∂2p
∂e2A

> 0 and qBB(eA, eB) = ∂2q
∂e2B

> 0. Our new assump-

tions on interaction in prevention also imply that ∂p
∂eB

= pB(eA, eB) and
∂q
∂eA

= qa(eA, eB) are not null. We distinguish two cases. In the first case,
the effort of DM A reduces the probability that the other DM faces the bad
event. This means that both efforts act in the same direction. We label this
case “reinforcing efforts”. It is described by the assumptions pB(eA, eB) < 0
and qA(eB, eA) < 0. The second case is where the effort of one agent increases
the probability that the other agent faces the bad event. We label this case
“conflicting efforts”. It is described by the assumptions pB(eA, eB) > 0 and
qA(eB, eA) > 0.

In this context, the DM A chooses effort eA in order to solve the following
maximization problem:

maxeA U(eA, eB) = p(eA, eB)U(WA−LA−eA)+ [1−p(eA, eB)]U(WA−eA).
(1)

while DM B maximizes the symmetrically defined expected utility V(eA, eB):

maxeB V(eA, eB) = q(eB, eA)V (WB−LB−eB)+[1−q(eB, eA)]V (WB−eB).
(2)

The action space is constrained by the condition that effort must be
weakly positive (eA ≥ 0, eB ≥ 0) and that wealth must also be weakly
positive, including in the case of loss, so eA ≤ WA−LA and eB ≤ WB−LB.6

We assume that for such levels of effort, p and q only take admissible values

6Assuming that the wealth constraint only applies before the realization of the loss,
i.e. replacing these conditions with eA ≤ WA and eB ≤ WB makes no difference for the
analysis.
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Figure 1: Action space

eB

eA
0 WA − LA

WB − LB

(in the [0, 1] interval).7 The resulting combined action space for the two DMs
is a rectangle, as represented in Figure 1.

We start our analysis by focusing on internal solutions to the maximiza-
tion problem. The first-order condition (FOC) for Problem (1) (DM A) is:

MA(eA, eB) =
∂U(eA, eB)

∂eA
=pA(eA, eB)[U(WA − LA − eA)− U(WA − eA)]

− p(eA, eB)U ′(WA − LA − eA)− [1− p(eA, eB)]U ′(WA − eA) = 0
(3)

and for Problem (2) (DM B) it is

MB(eA, eB) =qB(eB, eA)[V (WB − LB − eB)− V (WB − eB)]

− q(eB, eB)V ′(WB − LB − eB)− [1− q(eB, eA)]V ′(WB − eB) = 0
(4)

We assume that the second–order conditions for Problems (1) and (2) are
always satisfied. This assumption is introduced to ensure that a DM’s best re-
sponse is unique. Notice that Jullien et al. (1999) show that a sufficient condi-
tion for second–order condition (for DM A) to hold is pAA(eA, eB)p(eA, eB) ≥
2(pA(eA, eB))2. A similar sufficient condition exists for DM B.

7Allowing for U and V to take R as its domain would not affect our analysis. Indeed, it
is easy to see that given the assumptions on the utility functions, limeA→+∞ U(eA, eB) =
limeB→+∞ V(eA, eB) = −∞, while exerting zero effort guarantees a finite utility: the prob-
lem of selecting the optimal effort level is bounded from above anyway by the rationality
of DMs.
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Condition (3) has a clear and simple interpretation: it requires equal-
ity between marginal benefit of prevention (pA(eA, eB)[U(WA − LA − eA) −
U(WA− eA)]) and marginal cost of prevention (p(eA, eB)U ′(WA−LA− eA)−
[1 − p(eA, eB)]U ′(WA − eA)). Intuitively, it appears that three constrasting
effects are at play in the maximizand of Equation (1). On the one hand,
an increase in effort (i) increases the probability of the loss not happening,
which is an eventuality characterized by relatively large utility and (because
of the concavity of U) relatively small marginal utility, and at the same time
(ii) decreases pA, because of decreasing marginal effectiveness of effort. On
the other hand, (iii) an increase in effort decreases total wealth, and hence
increases the marginal utility of effort, conditional on p.

Clearly, both terms in Equation (3) depend on the effort of both DMs,
so the optimal choice of eA depends on the choice made by DM B on eB,
and vice–versa. The key element for determining DM A’s optimal reaction
to different levels of eB (i.e., DM A best response curve) is the sign of ∂MA

∂eB
.

More specifically, DM A’s response curve is increasing when ∂MA

∂eB
> 0 and

decreasing when ∂MA

∂eB
< 0. This can be shown in different ways. On one

hand, applying the implicit Function Theorem we immediately obtain that

deA
deB

= −
∂MA
∂eB
∂MA
∂eA

, implying in turn what is stated above. On the other hand, the

same conclusion is obtained from the fact that, if ∂MA

∂eB
> 0,the function U is

supermodular while, if ∂MA

∂eB
< 0, the function −U is supermodular.

We now have that:

∂MA

∂eB
=pAB(eA, eB)[U(WA − LA − eA)− U(WA − eA)]

+ pB(eA, eB)[U ′(WA − eA)− U ′(WA − LA − eA)] (5)

where pAB(eA, eB) = ∂2pA
∂eA∂eB

.

The sign of ∂MA

∂eB
depends on the signs of both pB and of pAB. As already

noted, the sign of pB determines the effect of one DM’s effort on the proba-
bility that the other DM incurs a bad event. It thus discriminates between
the case where the two efforts reinforce each other (pB < 0) and where they
are conflicting (pB > 0).

The sign of pAB(eA, eB) is difficult to determine a priori. Indeed, the
cross–derivative measures the marginal effect of a DM’s effort on the marginal
effectiveness of the other DM’s effort, and it can thus be either positive, null,
or negative. Note that when pAB < 0 the effort of DM B increases the
marginal effect of DM A effort while when pAB > 0 the effort of DM B
reduces the marginal effect of DM A effort. This occurs since pA always has
negative values. As shown in Figure 2a, this means that when pAB < 0, an
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Figure 2: Possible shape of pA

pA
eB

(a) pA < 0, pAB < 0

pA
eB

(b) pA < 0, pAB > 0

increase in eB causes the function pA to decrease, which implies in turn that
eA has a stronger negative marginal effect on p. The opposite occurs when
pAB > 0 (Figure 2b).

Lastly, note that pB and pAB have specific effects on the elements of (3),
since the sign of pB determines how eB affects the marginal cost of A’s own
prevention, while the sign of pAB determines how eB affects the marginal
benefit of A’s own prevention.

Considering the possible signs of pB and of pAB we have four cases:

a) pB < 0 and pAB < 0
In this case an increase in eB increases the marginal benefit of eA and
reduces the marginal cost of eA. The two changes affect choices in the
same direction, generating an incentive to increase eA. Analytically
∂MA

∂eB
> 0, implying that the reaction curve is increasing (U is super-

modular).

b) pB > 0 and pAB > 0
In this case an increase in eB reduces the marginal benefit of eA and
increases the marginal cost of eA. The two changes affect choices in
the same direction, generating an incentive to reduce eA. Analytically
∂MA

∂eB
< 0, implying that the reaction curve is decreasing (−U is super-

modular).

c) pB < 0 and pAB > 0
In this case an increase in eB increases the marginal benefit of eA and
increases the marginal cost of eA. The two changes affect choices in
opposite directions. The shape of the reaction curve depends on which
effect prevails. Proposition 1 below shows this case in detail.

d) pB > 0 and pAB < 0
In this case an increase in eB reduces the marginal benefit of eA and
reduces the marginal cost of eA. The two changes affect choices in

9



Table 1: Summary of the slope of the reaction function
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pB < 0 pB > 0

pAB < 0

pAB > 0

opposite directions, The shape of the reaction curve depends on which
effect prevails. This is also shown in Proposition 1.

Given these cases, a general result can be established:

Proposition 1. a) When pB < 0, the response curve e∗A(eB) is increasing if

eA
pAB
pB

> eA
U ′(WA − LA − eA)− U ′(WA − eA)

U(WA − LA − eA)− U(WA − eA)
(6)

and decreasing when the reversed inequality holds.
b) Conversely, when pB > 0, the response curve e∗A(eB) is decreasing if Con-
dition (6) holds and increasing when the reversed inequality holds.

Proof. The proof is trivial since inequality (6) directly comes from (5).

This proposition is summarized in Table 1. In order to provide a possible
interpretation for Condition (6) we consider that eA

pAB

pB
is the elasticity of

pB with respect to eA and that eA
U ′(WA−LA−eA)−U ′(WA−eA)
U(WA−LA−eA)−U(WA−eA)

is the elasticity of

the utility loss of being in the bad state of nature with respect to eA.8 Thus
Condition (6) is satisfied if, when eA changes, the elasticity of the probability
of occurrence of loss for DM B is greater than the elasticity of the utility loss
of DM A.

We provide a possible interpretation for this condition when pB > 0 and
Condition (6) holds. Similar interpretations hold in the other cases. An

8Notice that this elasticity is always negative.
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increase in eB raises the probability that a bad event for DM A occurs.
Assume now that DM A increases eA in response to the increase in eB.
This implies that the utility loss decreases in absolute value because of risk
aversion (i.e. U ′′(.) < 0). On the other hand, the marginal effect of eB on pB
can be reduced by the increase in eA. If this second effect is stronger than
the first one, then the optimal response envisages an increase in eA.

In cases c) and d) above, Condition (6) removes the ambiguity between
the effects on marginal benefit and marginal cost characterizing the two cases.
Moreover Proposition 1 allows us to identify large classes of problems in which
response curves are decreasing or increasing.

While the truth value of Condition (6) depends on the values of eA and
eB, an interesting aspect is that the right term is independent of eB. Hence,
depending on how the left term changes in eB we can characterize the space
of points (eA, eB) where eA is increasing in eB. The ratio in the right term
of Condition (6) is closely related to the coefficient of absolute risk aversion
for U . Specifically, if we consider a constant absolute risk aversion utility
U(x) = 1−e−βx, the ratio takes value −β, with β the Arrow-Pratt coefficient
of absolute risk aversion. This assumption bears the technical advantage that
the initial level of income can be disregarded from the analysis. If instead
we consider DMs to exhibit decreasing absolute risk aversion, we obtain that
the absolute value of the ratio is increasing in effort. In particular, it tends
to +∞ asymptotically for a constant relative risk aversion.

The reasoning followed for DM A also implies that DM B has a reaction
function where the optimal level of eB he chooses depends on the value of
eA. The shape of this reaction function depends on a condition similar to (6)
that is:

eB
qAB
qA

> eB
U ′(WB − LB − eB)− U ′(WB − eB)

U(WB − LB − eB)− U(WB − eB)
. (7)

Conclusions similar to those made above for the reaction function of DM A
hold for DM B.

It is worth noting that when both Conditions (6) and (7) are satisfied
the game described by functions U and V is a supermodular game (Topkis,
1979). Moreover, when Conditions (6) and (7) and efforts are reinforcing,
the game is a supermodular game with positive externalities (Milgrom and
Roberts, 1990, p. 1267). In a similar way when Conditions (6) and (7) and
efforts are conflicting the game is a kind of supermodular game with negative
externalities. We will refer to this classification below when commenting our
results.

We conclude the analysis of reaction functions with the following general
observation which will be useful for later results.
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Figure 3: Existence of Nash equilibrium

eB

eA
0 WA − LA

WB − LB

e∗B

e∗A

NE

(a) Proof of Proposition 3:
internal Nash equilib-
rium

eB

eA
0 WA − LA

WB − LB

e∗B

e∗A

NE

(b) Proof of Proposition 3:
boundary Nash equi-
librium

Lemma 2. Response functions e∗A(eB) and e∗B(eA) are continuous.

Proof. See Appendix A.

It is worth noticing that this lemma applies both to the internal and
boundary components of which a response curve might be the conjunction.
Hence, this result allows us to extend Proposition 1 to the entire action
space. If for instance e∗A is increasing in the interior of the action space, by
continuity it is also weakly increasing on the entire action space, including
its boundaries.

3 Equilibria

Given individual choices of DMs A and B studied in Section 2, we can now
easily derive the equilibria of the model in the case of decentralized decisions.
Equilibria can be studied graphically by drawing the two reaction functions
of DMs A and B in the same Cartesian diagram where eB and eA are put on
the two axes. As shown in Figure 4 and Figure 5 respectively, either a single
equilibrium or multiple equilibria can occur. Nash equilibria can lie either in
the interior of the action space, consistently with the analysis of the FOC in
Section 2, or on the boundaries. However, at least one Nash equilibrium is
certain to exist, as shown in the following proposition.

Proposition 3. At least one Nash equilibrium necessarily exists.

Proof. The proof is provided in Appendix A.
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Figure 4: Unique Nash equilibria with increasing and decreasing response curves
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Figure 5: Examples of multiple Nash equilibria
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The intuition behind this result is simple: since response functions are
continuous, their graphs are continuous curves. The graph of DM A’s re-
sponse curve connects the eB = 0 side and the opposite eB = WB − LB side
of the action space, while the graph of DM B’s response curve connects the
other two sides. So they need to intersect at some point: this point is a
Nash equilibrium. Figures 3a and 3b illustrate Proposition 3 in the case of
an internal and a boundary Nash equilibrium, respectively.

We now examine the case where there are multiple equilibria. In this
case, we have the following results:

Proposition 4. Moving from an equilibrium to another one, both eA and
eB change in the same direction (i.e., they either both increase or they both
decrease) if reaction curves are increasing (See Proposition 1), while they
change in opposite directions (i.e. one increases and the other decreases) if
reaction curves are decreasing.

Proof. Consider the case of increasing reaction curves. Assume without loss
of generality that x1 and x2 are two equilibria such that A increases effort
from x1 to x2, while B decreases effort. This would require one of the two
reaction curves to be decreasing in an interval between the two equilibrium
levels of effort, which contradicts the assumption. The case of decreasing
reaction curves is demonstrated similarly.

Figures 5a and 5b illustrate respectively the two cases of Proposition 4.
A special case of Proposition 4 is obtained under the assumption of Case a)
presented in Section 2 (see also Table 1), where we have:

Corollary 1. If pB < 0, pAB < 0, qA < 0 and qAB < 0, moving from
one equilibrium to another the levels of eA and eB both change in the same
direction. If pB > 0, pAB > 0, qA > 0, qAB > 0, moving from one equilibrium
to another, the levels of eA and eB change in opposite directions.

Two comparative statics results can be derived in the case of reinforcing
and conflicting efforts, respectively.

Proposition 5. In the case of reinforcing efforts (pB < 0, qA < 0), if reac-
tion curves are increasing (see Proposition 1), all Nash equilibria are Pareto
ranked and Pareto efficiency increases with DMs efforts; if the reaction func-
tions are decreasing, no Nash equilibria Pareto dominates any other.

Proof. The proof is provided in Appendix A.

Proposition 6. In the case of conflicting efforts (pB > 0, qA > 0), if reac-
tion curves are increasing (see Proposition 1), all Nash equilibria are Pareto

14



ranked and Pareto efficiency decreases with DMs efforts; if the reaction func-
tions are decreasing, no Nash equilibria Pareto dominates any other.

Proof. Similar to the proof of Proposition 5

Propositions 5 and 6 have an interesting interpretation. In case of re-
inforcing efforts, both DMs prefer the equilibrium where efforts are largest
while, in case of conflicting efforts, they both prefer the equilibrium where ef-
forts are smallest. But, since there is no coordination, the DMs cannot surely
reach this preferred equilibrium and it is possible that a different equilibrium
emerges. This suggests that a kind of “under-prevention” may arise in case of
reinforcing efforts and a kind of “over-prevention” may arise when efforts are
conflicting. A similar conclusion, although in a different sense, is obtained in
the next section when comparing a decentralized economy with a centralized
economy.

The following result completes our analysis of Pareto efficiency of Nash
equilibria.

Proposition 7. In the case of conflicting efforts (pB > 0, qA > 0), any Nash
equilibrium in the interior of the action space is Pareto inefficient.

Proof. Assume that (ēA, ēB) ∈ R2
>0 is a Nash Equilibrium located in the

interior of the action space. By definition, ∂U
∂eA

= 0; moreover, ∂U
∂eB

< 0

(this holds everywhere since pB > 0). Hence, given any vector u ∈ R2
>0,

the directional derivative ∇uU(ēA, ēB), which is a linear combination of the
two partial derivatives with strictly positive weights u1 and u2, is strictly
negative. That is, U increases when moving from (ēA, ēB) in direction −u
(Figure 6). The same reasoning, applied to DM B, shows that V increases
when moving in direction−u. Hence, in this direction both players marginally
increase their payoffs, and the proof is concluded.

Proposition 7 again suggests that contexts with conflicting efforts can re-
sult in Pareto–inefficient individual choices, since a coordinated choice with
less effort for both agents could increase both agent’s utility — a conclu-
sion resembling that of Proposition 6. The difference is that Proposition 7
provides a result which is more general (it requires no monotonicity assump-
tions on reaction curves) but only applies locally (in a neighborhood of a
Nash equilibrium).

It is worth noting that some of our results can be related to the clas-
sification of games mentioned in Section 2. In particular, the results in
Propositions 3 and 4 and Corollary 1 are coherent with known results on
supermodular games (Topkis, 1979) and the results in Proposition 5 are co-
herent with the conclusions by Milgrom and Roberts (1990) on supermodular
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Figure 6: Illustration of Proposition 7 from the point of view of DM A

eA ↓,U =

eB ↓⇒ U ↑

−u
U ↑

(ēA, ēB)

games with positive externalities. Lastly results in Proposition 6 are parallel
conclusions in the case of a supermodular game with negative externalities.

We conclude the analysis of Nash equilibria with a result covering a rel-
atively specific case, which however will be useful in the following section.

Lemma 8. If response curves are increasing and (ēA, ēB) is a Nash equilib-
rium such that

∂e∗A(ēB)

∂eB
· ∂e

∗
B(ēA)

∂eA
> 1 (8)

then there is another Nash equilibrium (ē′A, ē
′
B) with higher level of effort for

both DMs and such that Equation (8) does not hold.

Proof. See Appendix A.

Figures 5a, 5c and 5d illustrate this result: given that, in x2, eB has
a steeper slope than the inverse of eA, then the Nash equilibrium x1 must
necessarily exist.

4 Centralized economy

This section discusses the optimal choice of eA and eB to be made by a
centralized planner who chooses the levels of both efforts in order to maximize
total utility of the two DMs. The maximization problem of the planner is
thus

max
eA,eB

C(eA, eB) =p(eA, eB)U(WA − LA − eA) + [1− p(eA, eB)]U(WA − eA)+

q(eB, eA)V (WB − LB − eB) + [1− q(eB, eA)]V (WB − eB)
(9)
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We first focus on internal solutions. The FOCs with respect to eA and
eB are respectively:

CA(eA, eB) =pA(eA, eB)[U(WA − LA − eA)− U(WA − eA)]

− p(eA, eB)U ′(WA − LA − eA)− [1− p(eA, eB)]U ′(WA − eA)

+ qA(eA, eB)[V (WB − LB − eB)− V (WB − eB)] = 0 (10)

and

CB(eA, eB) =qB(eB, eA)[V (WB − LB − eB)− V (WB − eB)]

− q(eB, eB)V ′(WB − LB − eB)− [1− q(eB, eA)]V ′(WB − eB)

+ pB(eA, eB)[U(WA − LA − eA)− U(WA − eA)] = 0 (11)

In the same way as in the analysis of Nash equilibria in Section 3, we
assume that second order conditions are satisfied, that is, that C is con-
cave. Conditions (10) and (11) can each be directly interpreted as the one-
dimensional optimization of a DM’s effort conditioned on the level of the
other DM’s effort from the social planner’s point of view, rather than, as
previously analyzed, from the DM’s point of view. This observation will be
important for later results, starting with the following.

Lemma 9. In the case of reinforcing (conflicting) efforts, given the level
of effort ēi of a DM and the best reply ē∗j of the other DM, the problem of
maximizing social welfare given ēi has a unique solution ēsj, which is larger
(lower) than ē∗j . If e∗j is not on the right (left) boundary of the action space,
then the inequality is strict.

Proof. See Appendix A.

The term NA and the symmetric NB have a simple interpretation: they
capture the spillover of DM A’s effort on DM B’s probability of occurrence
of the bad event and the spillover of DM B’s effort on DM A’s probability of
occurrence of the bad event. These spillovers are clearly taken into account
by the planner, but not by the individual DM when he chooses his optimal
effort (as in Section 2). We will denote as (eCA, e

C
B) the centralized optimum,

and as (eDA , e
D
B) the decentralized Nash equilibrium.

The above result characterizes the individual and social problem when
the level of effort of one DM is kept fixed; on the basis of this result, and
considering now both choices of eA and eB simultaneously, we can derive the
following results.

Proposition 10. Let (eDA , e
D
B) be a Nash equilibrium under reinforcing efforts

(pA < 0 and qB < 0). The social problem has a maximum in (eCA, e
C
B) such
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that eCA ≥ eDA or eCB ≥ eDB , and both conditions hold if Conditions (6) and
(7) also hold. The inequalities are strict except for eDA = WA − LA or eDB =
WB − LB.

Proof. See Appendix A.

An analogous result holds in the case of conflicting efforts.

Proposition 11. Let (eDA , e
D
B) be a Nash equilibrium under conflicting efforts

(pA > 0 and qB > 0). The social problem has a maximum in (eCA, e
C
B) such

that eCA ≤ eDA or eCB ≤ eDB , and both conditions hold if Conditions (6) and (7)
do not hold. The inequalities are strict except for eDA = 0 or eDB = 0.

Proof. See Appendix A.

The results described above are general in the sense of not requiring
unicity of Nash equilibria and social optima, but they acquire a particular
interest if unicity is guaranteed. Indeed, in such a case they guarantee that
a social planner will necessarily want to increase/decrease the level of effort
of at least one DM, depending on the case considered.

In particular, we observe that by Lemma 8 if there is a unique Nash
equilibrium with increasing response curves, it must be such that Condi-
tion (8) does not hold, as in Figure 7a, and the effect of centralization is
non-ambiguous; whereas if there are multiple equilibria, there might be de-
centralized equilibria located in the opposite direction to that suggested by
Propositions 10 and 11. Consider for instance Figure 7e, where C1, the cen-
tralized optimum closest to D1, actually envisages lower levels of effort for
both DMs.

Also notice that Propositions 10 and 11 assert the presence of maxima of
the social planner’s problem, but do not determine whether they are global
maxima. The direction of externalities may suggest that in the case of rein-
forcing (conflicting) efforts, local maxima with higher (lower) levels of effort
will attain higher values of C. But only in the case in which such maxima are
unique (i.e., when response curves have a unique intersection) is the action
of a social planner that aims for the global maximum guaranteed to go in the
direction indicated by 10 and 11. In the symmetric case we can then provide
an even stronger result, examined in the following proposition.

Proposition 12. If probability and utility functions are symmetric between
the two decision makers and both the centralized and the decentralized problem
have a unique solution, then both eA and eB are larger in the centralized
economy than in the decentralized economy with reinforcing efforts, and lower
with conflicting efforts.
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Figure 7: Comparison of centralized and decentralized equilibria
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Proof. If the decentralized solution is unique, then it must be symmetric
(eDA = eDB), as otherwise its symmetric (eDB , e

D
A) would be another solution.

The same holds for the centralized solution. Propositions 10 and 11 now
prove that at least one DM is changing effort level in the specified direction.
Since the two DMs exert identical levels of effort in both the centralized and
in the decentralized solutions, both change their effort levels in the specified
direction.

Comparing centralized and decentralized equilibria shows the complete
effect of the interaction in terms of socially desirable choices. When efforts
are reinforcing, there are positive spillovers from one DM’s prevention to the
probability of loss of the other DM. These spillovers are neglected by each
DM in his decentralized choice, which implies that he exerts too low effort
in prevention from a social standpoint. In the case of a unique equilibrium,
this implies in turn that a social planner would ask for more effort to be
exerted. When the equilibrium is symmetric, the greater effort required
from a socially optimal standpoint is split equally between the two DMs. In
a unique asymmetric equilibrium, the effort of at least one DM still increases,
while the other might go in the opposite direction (as in Figure 7d). When
efforts are conflicting the opposite occurs. Spillovers are negative, so the
planner will aim for lower effort exerted in equilibrium. Again, in the case of
unicity, this involves at least one DM reducing his own effort in an asymmetric
setting, while the reduction is split equally between the two DMs when the
equilibrium is symmetric. Seen from another point of view, if any policy
intervention results in different subjects altering their behavior in opposite
directions, this is due to heterogeneities in either prevention ability, or risk
preferences.

5 Application to face mask use

Infective diseases in general, and COVID-19 in particular, are a very relevant
application of the theory developed so far. Indeed, in this situation, multiple
actors can vary the level of effort they put into preventing the spread of
infection and every single actor has an effect on others’ decisions.

In what follows, we disregard the relatively narrow problem of isolating
individuals who are known to be infected, and focus instead on the more fre-
quent problem of general measures adopted to limit the spread of contagion
from potentially infected individuals undetected among the general popula-
tion. The prototypical example of these measures is face masks. These have
the advantage of having relatively well defined properties in terms of risk
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abatement, which depend on perseverance (keeping a mask on all the time
in a social setting), correct use (for instance, covering the nose) and also on
the type of mask used, as different types guarantee different levels of virus
abatement. These typically correlate with higher costs, and lower comfort.
However, our model can also apply to other measures such as hand washing,
social distancing and avoiding gatherings. In this last case the effort consists
of avoiding an enjoyable social occasion or a pleasant but crowded location.

We assume that the two decision makers considered are general members
of a population, only potentially infected. Thus, the a priori probability of
infection is considered to be roughly symmetrical: if A and B meet and talk
in close proximity without masks or other protective devices, they will each
have each the same probability of being infected by the other. The effect of
protective devices can be expressed, as is common in the literature, in terms
of share of pathogens blocked from reaching a potential victim (Leung et al.,
2020; Lepelletier et al., 2020; Tcharkhtchi et al., 2021). For simplicity, we
assume that this effect is symmetric, that is, that a mask worn by A protects
both A from being infected from B and vice-versa to the same level. We are
aware this is a simplification, given that for instance different face masks are
relatively effective in stopping the inflow, or the outflow, of droplets. The
model presented in the previous sections could also lend itself to modeling
this aspect, but for simplicity of exposition we abstract from it in what
follows. This simplification in fact helps us focus on the main phenomenon
of interest, which is that individual effort simultaneously affects both one’s
own and others’ risk.

We hence base our modeling of the problem on the following assumptions.

� Between individuals involved in a typical face–to–face interaction with
no precautions taken, there is a given flow of aerosol droplets, which
we take as reference for the analysis.

� Individuals can exert effort by adopting precautionary measures; a lin-
ear increase in effort translates into an exponential abatement of this
flow. For instance, if a simple mask abates the flow to 40%, then wear-
ing two such masks abates the flow twice by this proportion, bringing
it to 40%2 = 16%: in general, levels of effort eA and eB result in a flow
of αeA+eB , with α ∈ (0, 1).

� The probability of infection is symmetric: p = q.

� If one of the two individuals is infected, then the (reference) flow
of aerosol towards the other individual includes a given sample of
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pathogens which we normalize to 1 without loss of generality. Any mea-
sure that reduces the flow of aerosol reduces the number of pathogens
proportionally.

� In accordance with the widely adopted exponential dose–response model
(Haas, 1983; Conlan et al., 2011), we assume that the probability of
infection when inhaling a given dose D is p = 1 − e−rD, where r ∈
(0, 1) describes the “single-hit” probability – the probability of a single
instance of the virus causing an infection. Given the normalization
specified in the previous bullet point, we have that r is the probability
of contagion in a typical interaction with no precautions taken.

� We further consider that transmission only takes place if exactly one
of the two subjects is infected (omitting for simplicity the incubation
period from the analysis), and that this happens with probability i(1−i)
for a disease with prevalence i ∈ [0, 1] in the population of interest: in

particular, each individual has a probability of i(1−i)
2

of being a healthy
subject meeting an infected subject.

� We limit the analysis to susceptible individuals — that is, we exclude
individuals who are immune against the pathogen (e.g. vaccinated).

Given the above, we obtain the functional form

p(eA, eB) = q(eA, eB) =
i(1− i)

2

(
1− e−rαeA+eB

)
with r, α ∈ (0, 1) the two parameters that describe the aggressiveness of

the pathogen and the efficacy of prevention efforts, respectively.
We observe that entirely suppressing the flow nullifies the probability

of transmission (limeA+eB→∞ p(eA, eB) = 0), which for null effort reaches a

maximum value p(0, 0) = i(1−i)
2

(1− e−r). This maximum value is pathogen–
dependent, reflecting different aspects of the epidemic at a given moment
in time. In other words, it reflects the aggressivity of the pathogen but
also population characteristics which may lead to a given prevalence i. For
simplicity of analysis, we relabel the constant term i(i−1)

2
to c, obtaining

p(eA, eB) = c(1− e−rαeA+eB ).
This functional form results in partial derivatives

pA(eA, eB) = qB(eA, eB) = cr log(α)e−rα
eA+eBαeA+eB (12)

and cross derivatives

pAB(eA, eB) = qBA(eA, eB) = cr log (α)2e−α
ea+ebr

(
αea+eb − α2ea+2ebr

)
. (13)
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The sign of pAB implies that if eB increases, the marginal effect of A’s
effort decreases. This might seem counterintuitive, given that an increase of
eB reduces the flow between A and B, and hence A’s potential to reduce it
further. However, reducing the flow also means reaching values for which its
marginal effect on the probability of infection is stronger, and this second
effect ultimately dominates.

The previous computations imply that

pAB
pA

= log(α)(1− rαeA+eB) (14)

In order to explicitly parametrize preferences we assume that DM exhbits a
CARA utility function, i.e. that U(x) = −eβx, where β > 0 is the Arrow-
Pratt coefficient of absolute risk aversion. We have shown in Section 2 that,
in this case,

U ′(WA − LA − eA)− U ′(WA − eA)

U(WA − LA − eA)− U(WA − eA)
= −β (15)

Substituting (14) and (15) into (6) we obtain:

log(α)(1− rαeA+eB) > −β (16)

which in this setting of reinforcing efforts becomes a necessary and sufficient
condition for response curves being increasing. It is worth noting that the
quantity in the left-hand side of (16) does not depend on the current preva-
lence of the disease: it is always negative, with its absolute value increasing
in eA and eB and bounded from above by log(α). Specifically, on the basis
of the value of R0 typically attributed to COVID-19 — between 3 (Billah
et al., 2020) and 7-8 (SPI-M-O, 2021) — the mean serial interval in absence
of precautionary measures (estimated at 6.6 days in the phase of uncontrolled
spread of the pandemic by Cereda et al., 2020) and the typical number of con-
tacts measured in large scale studies (between 5 and 20 according to Mossong
et al., 2008), we obtain that the reference probability of contagion, 1− e−r,
should be no larger than 8

6.6·5 ≈ 0.24. This implies that r < 0.27, and hence
that the left side of Condition (16) takes a value close to log(α) even when
little or no effort is exerted. The quantity in the right-hand side of (16) is the
opposite of the Arrow-Pratt index of absolute risk aversion and is negative
too. Estimates of β vary significantly across studies (see Cohen and Einav,
2007) but they are usually very close to 0 (no higher than 0.01). Conversely,
α is measured on a scale which goes from 0 (low–effort, efficient prevention
devices) to 1 (prevention devices require large effort for even minimal pre-
vention). Proper calibration would require definition of a nexus between for
instance utility functions and available wealth, but the availability of cheap
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devices (face masks) which significantly decrease the flow of droplets suggests
a value of α not far from 0 for COVID-19 in advanced economies. This, in
turn, suggests that log(α)� 0 and Condition (16) should never hold.

According to Proposition 1, this analysis suggests that reaction curves in
the case of face masks should definitely be decreasing: a higher level of effort
on behalf of an individual will make another individual less willing to exert
effort. Heterogeneity in effort levels across individuals, then, is perfectly
consistent with the evidence, from many different countries, that levels of
effort exerted in prevention during the pandemic vary significantly between
individuals (Galasso et al., 2020; Fan et al., 2020; Perrotta et al., 2021).

It is clear that the evidence could be explained by other reasons, in-
cluding differences in individual preferences and beliefs and differences in
individual levels of knowledge and expertise on the role of protective devices.
The conclusions in this work, however, provide the following complementary
justification which is not based on individual differences but which is fully
based on strategic behavior. Even individuals with the same preferences and
beliefs may strategically adapt to each other in asymmetric equilibria where
only one exerts a high level of effort. Interestingly, this may also happen as
a progressive reaction to increased safety from contagion due to the other
DM’s effort (Battiston and Gamba, 2021) — it is not necessary to assume
explicit strategic reasoning on behalf of individuals.

Regarding the social problem, we know from Proposition 12 that in the
symmetric case, in the presence of reinforcing efforts and assuming the unic-
ity of the centralized and decentralized solutions, a central planner wants to
increase the level of effort for both DMs. But outside the symmetric case,
the presence of decreasing response functions introduces the possibility of
the two DMs changing their effort levels in opposite directions from the de-
centralized to the centralized equilibrium (recall Proposition 10 and Figure
7b). Also in this case, however, unicity will guarantee that at least one DM
has to increase his effort from a social standpoint. This provides a new the-
oretical justification for measures taken in many countries to push people to
increase their protection against possible contagion. Our analysis finds that
the measures can in fact be justified by the role of positive externalities in
face mask use. These are not taken into account by individuals, but need to
be taken into account from the point of view of social optimality.

Lastly, our analysis allows for the possibility that central planning changes
in different directions the effort levels of two individuals in the same pop-
ulation. This might seem counterintuive, but to put the possibility into
context, consider that prevention measures deployed to curb the contagion
of COVID-19 are in reality strongly differentiated across different segments
of any country’s population, on the basis of age, occupation, and location
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(as in the case of targeted lockdowns enacted in regions, or municipalities,
where cases surge). To the extent that such focused measures reduce the
likelihood of contagion between infected and susceptible individuals, they
make the probability of loss more remote for individuals not affected by such
measures, and hence they decrease their individual propensity to exert effort.
Even accounting for compulsory measures which also apply to them, the net
result might be a lower level of effort, for some individuals, than if no policy
had been implemented, that is, with the pandemic completely out of control.
In other words, Lemma 9 does guarantee that individuals will increase effort
conditional on other individuals’ effort levels, but they might decrease effort
once taking into account that other individuals (were required to) increase
their own effort levels.

6 Conclusions

When preventing a risk of incurring a bad event, an individual may, at the
same time, affect the probability that the same event occurs for other people.
This interaction between decisions can go in different directions: the proba-
bility of the bad event can either decrease (in what we term the reinforcing
efforts case) or increase (conflicting efforts) in response to the other agent’s
effort.

The effects of such interaction were formalized and described first in an
economy where choice is decentralized and then where the economy is cen-
trally planned. In the decentralized economy, we examined the set of equi-
libria by analyzing the decision makers’ reaction functions. We showed that
the shape of the reaction functions depends on whether the efforts are rein-
forcing or conflicting, which affects marginal benefit of prevention, but also
on the effects of interaction on marginal cost. The composition of these two
different effects is determined by a condition comparing two elasticities. In
particular, when efforts are reinforcing, reaction functions are increasing if,
in the presence of an increase of effort exerted by a decision maker, the elas-
ticity of the probability of occurrence of loss for the other decision maker is
greater than the elasticity of the utility loss of the decision maker exerting
the effort. Reaction functions are instead decreasing if the former is smaller
than the latter. The opposite occurs when efforts are conflicting.

In all these situations, multiple equilibria may arise. In the cases where
reaction curves are increasing, moving from one equilibrium to another im-
plies that efforts exerted by both decision makers change in the same direc-
tion (they either increase or decrease together). But in cases where reaction
curves are decreasing, moving from one equilibrium to another implies that
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efforts change in opposite directions (the effort exerted by one decision maker
increases and the effort exerted by the other decreases).

Comparing these equilibria with those chosen by a central planner high-
lights that from a socially optimal standpoint there may be a kind of under-
prevention or over-prevention in a decentralized economy. This is because
individuals do not internalize into their choices the spillovers that they gen-
erate on the risks faced by other decision makers. We showed that, when the
equilibrium is unique and in the case of reinforcing efforts, the central plan-
ner will require at least one DM to exert more effort than in the decentralized
equilibrium, and that both DMs will do so if reaction curves are increasing
or if DMs are symmetric. In the case of conflicting efforts, on the other hand,
socially optimal behavior requires that at least one individual decreases his
effort while all individuals are required to reduce effort if reaction curves are
increasing or if DMs are symmetric.

We have shown how these general results apply to the prevention of conta-
gion in a pandemic such as COVID-19. Efforts aimed at reducing the spread,
including social distancing and mask wearing, have positive externalities, as
they reduce the probability of infecting others as well as one’s own probabil-
ity of catching the virus (Jones et al., 2020). Our results show that, unless
there is significant asymmetry between DMs, they will all increase their ef-
fort in the centralized optimum as compared to the Nash equilibrium. Our
conclusions also provide a theoretical explanation in terms of strategic be-
havior for the evidence that levels of prevention effort during the pandemic
vary significantly between individuals.

Our general results have clear implications from various standpoints.
They show first that, in order to make an optimal choice in prevention ef-
fort, each individual needs to take other people’s choices into account. This
finding is significant from a theoretical standpoint, as, to date, it has not
been taken into account in prevention models. The same finding is also im-
portant in explaining different situations emerging in society. In the case
of multiple equilibria and increasing reaction curves, different equilibria are
characterized by either everyone in society exerting high effort or everyone
exerting low effort. Clearly, the type of equilibrium reached will depend on
social habits and customs, and this also explains why people in different
countries show different behaviors when facing the same risk. On the other
hand, multiple equilibria in the case of decreasing reaction curves, where one
individual reduces effort as the best reply to the other increasing it, may be a
possible explanation of situations where significantly different levels of effort
are observed within the same population.

Moreover, our analysis clearly shows that in the presence of interactions,
decentralized choices may generate either under-provision or over-provision of
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prevention from a socially optimal standpoint. This supports the widespread
adoption of public policies aimed at encouraging various forms of prevention.
Our analysis provides a strong justification for such policies, implemented
across different fields of the economy. Measures involving constraints existed
before COVID-19, as, for example, many countries enacting legislation ban-
ning the use of alcohol or drugs before driving. The COVID-19 pandemic
however is a particularly clear example of the key role of centralized decision
making, for instance in the mandatory use of face masks and various lock-
downs implemented across different countries. Lastly, our results are relevant
for policies acting in different directions, and particularly for different forms
of incentive or disincentive to prevention. In fact, it is clear that incentives,
perhaps in the form of subsidies, could usefully be introduced to strengthen
reinforcing efforts, and disincentives, perhaps in the form of taxation, could
be useful in the case of conflicting efforts. A very simple analysis of subsi-
dies for prevention was recently proposed by Menegatti (2021b), but while
it examines the impact of some interventions, the study does not provide
a foundation for the sub–optimality of decentralized equilibrium, just tak-
ing it as a fact. The present paper instead provides a basis for overcoming
this limitation, and opens space for new and more in–depth future research
on the issue of interaction in risk prevention. In this respect a specific as-
pect that may call for a fruitful investigation is the design of mechanisms of
taxes/incentives that can push agents’ decentralized choice towards socially
optimal levels of risk prevention.
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Appendix A Proofs

Proof of Lemma 2. We prove the continuity of e∗B (Figure 8). The continuity
of e∗A is proven symmetrically. If ēA is a point of discontinuity for e∗B, then
by definition there is an ε̄ > 0 such that for every δ > 0, there is a point
eAδ ∈ [ēA − δ, ēA + δ] for which e∗B(eAδ) 6∈ [e∗B(ēA) − ε̄, e∗B(ēA) + ε̄]. If we
consider δn = 1

n
, we obtain a sequence of points eAδn converging to ēA such

that e∗B(eAδn) is always distant at least ε̄ from e∗B(ēA). We apply the Bolzano–
Weierstrass theorem in order to extract from this sequence a subsequence ẽAn
such that e∗B(ẽAn) has a limit ẽB: clearly ẽB 6= e∗B(ēA). Let v̄ = V(ēA, e

∗
B(ēA))

and ṽ = V(ēA, ẽB): since V is single–peaked in eB (recall ∂
2V
∂e2B

= ∂MB

∂eB
< 0) and

for eA = ēA reaches (by definition) a maximum in e∗B(ēA), then necessarily
v̄ > ṽ.

Since V is continuous, V(ẽAn, e
∗
B(ẽAn)) converges to ṽ, and V(ẽAn, e

∗
B(ēA))

converges to v̄ > ṽ. Hence, for a large enough n, it must be that V(ẽAn, e
∗
B(ēA)) >

V(ẽAn, e
∗
B(ẽAn)). But this leads to a contradiction, because e∗B(ẽAn) should

maximize V given eA = ẽAn.

e∗B

ēA

ẽB

e∗B(ēA)

eB

eA
0 WA − LA

WB − LB

ẽAn

ũ← U

ū← U

Figure 8: Proof of Lemma 2

Proof of Proposition 3. Consider the set IB ⊂ [0,WB − LB] defined as IB =
{eB|eB ≤ e∗B(e∗A(e′B))}. The set is non-empty, as it contains at least 0. If
WB −LB ∈ IB, this means that WB −LB ≤ e∗B(e∗A(WB −LB)), but since e∗B
is bounded from above by WB−LB, then WB−LB = e∗B(e∗A(WB−LB)), and
(e∗A(WB−LB),WB−LB) is a Nash equilibrium. If instead WB−LB 6∈ IB, then
consider ẽB = sup(IB) and a sequence eBi in IB that converges to ẽB. By the
continuity of e∗A and of e∗B, we obtain e∗B(e∗A(ẽB)) = limn→∞ e

∗
B(e∗A(eBi)) = ẽB.

So (e∗A(ẽB), ẽB) is a Nash equilibrium.

Proof of Proposition 5. Let (eA, eB), (e′A, e
′
B) be two Nash equilibria; with-

out loss of generality, assume e′A > eA. If response curves are increasing,
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Proposition 4 guarantees that e′B > eB. Since pB < 0, DM A’s prefer-
ences are such that (eA, e

′
B) >

A
(eA, eB); moreover, since e′A is A’s unique

best reply to e′B, then (e′A, e
′
B) >

A
(eA, e

′
B); so (e′A, e

′
B) >

A
(eA, eB). Similarly,

(e′A, e
′
B) >

B
(e′A, eB) >

B
(eA, eB). So (e′A, e

′
B) Pareto dominates (eA, eB).

Vice–versa, if response curves are decreasing, Proposition 4 guarantees
that e′B < eB. Since pB < 0, (eA, e

′
B) >

A
(eA, eB), and since e′A best replies to

e′B, (e′A, e
′
B) >

A
(eA, e

′
B); similarly, (eA, eB) >

B
(eA, e

′
B) >

B
(e′A, e

′
B). So neither

of the two equilibria Pareto dominates the other.

Proof of Lemma 8. Since (ēA, ēB) is a Nash equilibrium, it is a crossing point

of the response curves, and since
∂e∗B(ēA)

∂eA
> 1

∂e∗
A

(ēB)

∂eB

=
∂e∗A

−1(ēA)

∂eA
, there is a right

neighborhood of ēA where e∗B(eA) > e∗A
−1(eA).

We know from Proposition 4 that the two effort levels change in the same
direction from an equilibrium to another. So if there are Nash equilibria
with eA > ēA, they are such that eB > ēB too, and vice-versa. Now let us
assume that there are no such Nash equilibria. There are thus no further
internal crossing points of the response curves for eA > ēA or eB > ēB,
which means that the right neighborhood of ēA for which e∗B(eA) > e∗A

−1(eA)
is the entire (ēA,WA − LA) interval. Now if e∗B(WA − LA) < WB − LB,
then limeA→WA−LA

e∗A
−1(eA) < WB − LB and by continuity there is an e′B

such that ∀eB ≥ e′B, we have e∗A(eB) = WA − LA (see x3 in Figure 5c).
In this case, (WA − LA, e

∗
B(WA − LA)) is a Nash equilibrium. If instead

e∗B(WA−LA) = WB−LB, then (e∗A(WB−LB),WB−LB) is a Nash equilibrium
(see x3 in Figure 5d). In all cases, in the Nash equilibrium e∗B and e∗A

−1

coincide, and if Condition (8) held, it would imply (as in the reasoning above)
the existence of a left neighborhood of ē′A where e∗B(eA) < e∗A

−1(eA). But
this is a contradiction because we know that the opposite holds in [ēA, ē

′
A];

so Condition (8) cannot hold.

Proof of Lemma 9. Let ē∗A = e∗A(ēB) be the best reply of DM A to ēB, and
assume it is in the interior of the action space. We know it necessarily satisfies
Equation (3), that is, MA = 0. The socially optimal level of effort for A given
ēB on the other hand satisfies Equation (10), that is, CA = 0. The two differ
in just one term NA = CA−MA = qA(eA, eB)[V (WB−LB−eB)−V (WB−eB)].
Since V is increasing, the term between square brackets is always negative,
so the sign of NA is opposite the sign of qA.

Let us first consider the case of reinforcing efforts (qA < 0), so that
CA(ē∗A, ēB) = NA(ē∗A, ēB) > 0. If there exists esA such that CA(eA, ēB) = 0,
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Figure 9: Illustration of proofs of Propositions 10 and 11
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(a) Proof of Proposition 10: inter-
nal crossing point
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(b) Proof of Proposition 10:
case esB(WA − LA) < WB − LB
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(c) Proof of Proposition 10:
case esB(WA − LA) = WB − LB
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(d) Proof of Proposition 11

Note: Solid lines represent original response curves and D the original Nash equilibrium.

Dashed lines represent socially optimal response curves and C the centralized optimum.
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then since we know that ∂CA

∂eA
< 0, necessarily esA > e∗A holds. If on the other

hand there is no such esA, by continuity it must then be that CA(eA, ēB) >
0 ∀eA > e∗A, and as a consequence C(eA, ēB) > C(ē∗A, ēB) ∀eA > e∗A. Since
the problem is bounded from above, then the boundary level of effort ēsA =
WA − LA maximizes C(eA, ēB). So in conclusion, there is either a boundary
solution, or there is instead an internal one, which is unique because of
concavity.

If instead ē∗A is on the left boundary, then it must be that MA(eA, ēB) ≤ 0,
and the proof is analogous. Finally, if it is on the right boundary, it must be
that MA(eA, ēB) ≥ 0: hence CA(eA, ēB) > 0, and esA = e∗A.

Vice-versa, in the case of conflicting efforts (qB > 0), we have CA(ē∗A, ēB) =
NA(ē∗A, ēB) < 0. Again, if there is esA such that CA(eA, ēB) = 0, the second-
order condition implies that esA < e∗A. Otherwise, CA(ē∗A, ēB) < 0 ∀eA ∈
[0, ē∗A) and esA = 0 is a boundary solution. The case of e∗A on the boundaries
is analyzed symmetrically with the analysis of reinforcing efforts.

The analysis of the individual and social optimization of eB with respect
to a given ēA is symmetric to the analysis above.

Proof of Proposition 10. We start by excluding the case eDA = WA − LA,
which we consider later. Let eminA = esA(0), and consider the curve CA ob-
tained as the union of the graph of esA and the segment from (0, 0) to (eminA , 0)
(See Figure 9a). We observe that the set {(eA, eB) ∈ CA|eA = eDA , eB < eDB}
is non–empty, because CA connects the point (0, 0) to a point (esA(eB), eDB)
which is (by Lemma 9) right of (eDA , e

D
B), while only intersecting each eB 6= 0

exactly once, so it must pass strictly below (eDA , e
D
B). Now if CA is above

the graph of e∗B in (esA(eDB), eDB), there must be a crossing point of the two
curves with eA ∈ (eDA , e

s
A(eB)), and this crossing point is a centralized op-

timum where A exerts an effort larger than eDA , which concludes the proof.
If instead CA is still below the graph of e∗B in (esA(eB), eDB), then if there is
a eB ∈ (eDB ,WB − LB) for which CA is instead above the graph of e∗B, then
there must be a crossing point of the two curves with eB ∈ (eDB ,WB − LB),
and this crossing point is a centralized optimum where B exerts an effort
larger than eDB , which again concludes the proof. Finally, if CA is below the
graph of e∗B for all eB ∈ (eDB ,WB − LB), we distinguish two further cases:
(i) esB(WA − LA) < WB − LB, in which case (esA(WB − LB),WB − LB) is a
centralized optimum (Figure 9b), and (ii) esB(WA−LA) = WB−LB, in which
case necessarily (WA − LA, esB(WA − LA)) is a centralized optimum (Figure
9c).

The case eDA = WA−LA is approached by reversing the role of DM A and
DM B in the above proof; if (eDA , e

D
B) = (WA − LA,WB − LB), by Lemma 8

(eCA, e
C
B) = (eDA , e

D
B).
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So we have proven that at least one DM increases effort in the centralized
solution. Assume without loss of generality that it is DM A. If Conditions
(6) and (7) hold, e∗B is increasing, and hence by Lemma 9 eCB = esB(eCA) ≥
e∗B(eCA) > e∗B(eDA) = eDB : DM B is also increasing effort.

Proof of Proposition 11. The proof is symmetric to the proof of Proposition
10 In fact, it can be obtained by mirroring the action space horizontally and
vertically, replacing each eA with WA−LA−eA and each eB with WB−LB−eB
(see Figure 9d).
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